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Abstract—Deep neural networks have achieved great success in the last decade. When designing neural networks to handle the
ubiquitous geometric data such as point clouds and graphs, it is critical that the model can maintain invariance towards various
transformations such as translation, rotation, and scaling. Most existing graph neural network (GNN) approaches can only maintain
permutation-invariance, failing to guarantee invariance with respect to other transformations. Besides GNNs, other works design
sophisticated transformation-invariant layers, which are computationally expensive and difficult to be extended. In this paper, we revisit
why general neural networks cannot maintain transformation invariance. Our findings show that transformation-invariant and
distance-preserving initial point representations are sufficient to achieve transformation invariance rather than needing sophisticated
neural layer designs. Motivated by these findings, we propose Transformation Invariant Neural Networks (TinvNet), a straightforward
and general plug-in for geometric data. Specifically, we realize transformation invariant and distance-preserving initial point
representations by modifying multi-dimensional scaling and feed the representations into existing neural networks. We prove that
TinvNet can strictly guarantee transformation invariance, being general and flexible enough to be combined with the existing neural
networks. Extensive experimental results on point cloud analysis and combinatorial optimization demonstrate the effectiveness and
general applicability of our method. We also extend our method into equivariance cases. Based on the results, we advocate that
TinvNet should be considered as an essential baseline for further studies of transformation-invariant geometric deep learning.

Index Terms—Transformation Invariance, Geometric Deep Learning, Combinatorial Optimization, Point Cloud, Graph Neural Network

1 INTRODUCTION

EEP neural networks [1] have achieved enormous suc-
Dcesses in many fields such as computer vision [2],
natural language processing [3], and game playing [4]. On
the other hand, geometric data, such as graphs or point
clouds, is ubiquitous in practice, ranging from molecules in
proteins to 3D objects. Compared with grid-structured data
such as acoustics, images, or videos, geometric data poses
more challenges for designing suitable neural networks due
to the irregular structure [5].

To handle geometric data effectively, one critical inductive
bias is to design invariant and equivariant models with
respect to various transformations such as permutation,
translation, rotation, reflection, and scaling. Take 3D object
recognition in point cloud analysis as an example. The shape
of an object is invariant to isometric transformations such as
translation, rotation, and reflection. For the classic NP-hard
travelling salesman problem (TSP), the solution of a TSP
is invariant to isometric and the scaling transformations of
the coordinates. Maintaining invariance and equivariance
with respect to these transformations can enhance the gen-
eralization ability, robustness, and interpretability of neural
networks in handling geometric data [5], [6]. However,
designing transformation invariant neural networks for ge-
ometric data poses great challenges. For instance, though
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convolutional neural networks (CNNs) are known to enjoy
and benefit from translation equivariance in handling im-
ages and videos [7], it is non-trivial to extend such merit to
geometric data since there is no grid structure.

As an emerging type of neural networks to process
geometric data, graph neural networks (GNNs) have been
shown effective in a wide range of geometric applica-
tions such as protein interaction prediction [8], point cloud
analysis [9], combinatorial optimization [10], etc. Maintain-
ing permutation-equivariance is a crucial reason behind
the success of GNNs, i.e., if we randomly permute the
IDs of nodes, the representations produced by GNNs are
permuted accordingly. By adopting the message-passing
framework [11], most GNNs can easily satisfy permutation-
equivariance [12], [13]. However, most GNNs largely ignore
other transformations mentioned above, e.g., rotation and
scaling. Ideally, GNNs should be able to produce equiv-
ariant or invariant representations when geometric data is
transformed. But the existing GNNs consider transformed
data as independent samples, failing to produce desired
representations.

Other attempts to alleviate the problems caused by
transformations include data augmentation and manually
extracting transformation invariant features such as the dis-
tance and angle between geometric objects [14], [15]. Due to
the massive number of possible transformations, data aug-
mentation cannot guarantee effectiveness and works poorly
in practice. Meanwhile, manually designed features can
only preserve a limited amount of information. Some works
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have designed specific neural network layers targeting cer-
tain transformations such as rotations [16], [17]. Though
having made some progresses, these methods usually resort
to complicated group theories and geometric analysis, suf-
fering from being computationally expensive and difficult to
be extended [17]. For example, when incorporating the at-
tention mechanism [18] into an existing rotation-equivariant
network named tensor field network [16], great efforts are
needed to redesign all operators [17].

To address this problem, we first revisit why the existing
neural networks cannot maintain transformation invariance
when handling geometric data. We find that transformation-
invariant and distance-preserving initial point representa-
tions are sufficient to achieve transformation invariance
rather than needing to design sophisticated neural network
layers as proposed in the existing methods. Motivated by
these findings, we propose Transformation Invariant Neural
Network (TinvNet), a straightforward and general plug-in
for geometric data. Specifically, we realize transformation
invariant and distance-preserving initial point represen-
tations by modifying multi-dimensional scaling (MDS), a
classical dimensionality reduction technique. We then feed
the initial representation into neural networks. We prove
that such a simple mechanism can strictly guarantee trans-
formation invariance. Besides, since TinvNet is a general
framework compatible with existing neural networks, it
is flexible to be combined with various architectures such
as different GNN variants or other neural networks for
geometric data. We further provide extending our method
to equivariance cases in Appendix C.

We conduct extensive experiments on tasks including
point cloud analysis and combinatorial optimization. The
results show that TinvNet is indeed strictly invariant to
various transformations such as translation, rotation, reflec-
tion, and scaling. In the rotation transformation setting of
point cloud analysis, TinvNet combined with DGCNN [9],
a well-known non-rotation-invariant GNN model, outper-
forms or matches the performance of various recently pro-
posed models specifically designed to be rotation-invariant.
Our proposed model also significantly outperforms a recent
learning-based model for combinatorial problems when
transformations are involved. Besides, thanks to the simple
and general mechanism of TinvNet, it is easily compatible
with multiple architectures. Based on the experimental re-
sults, we advocate that TinvNet should be considered a
new starting point and an essential baseline for further
studies of transformation-invariance on geometric data. Our
contributions are summarized as follows:

o We revisit transformation invariant geometric deep learn-
ing and show that transformation-invariant and distance-
preserving initial point representation is sufficient to
solve the problem.

o Motivated by the findings, we propose Transformation
Invariant Neural Network, a straightforward and gen-
eral plug-in that is proved to be strictly transformation-
invariant as well as general and flexible to combine with
various neural networks.

o Extensive experimental results on tasks including point
cloud analysis and combinatorial optimization demon-
strate the efficacy and general applicability of our model.

2

The rest of the paper is organized as follows. In Section 2,
we review related work. The problem formulation is intro-
duced in Section 3. We revisit the transformation invariance
problem and propose the TinvNet model in Section 4. We
report experimental results in Section 5, and conclude our
paper in Section 6.

2 RELATED WORK

In this section, we first review GNNs and their permutation
equivariance and invariance properties. Then, we review
other invariance for geometric deep learning.

2.1 Graph Neural Networks and Permutation Equivari-
ance/Invariance

GNN:ss are one emerging type of neural networks to process
geometric data. Early GNNs such as recursive architec-
tures [19], [20] and contextual realizations [21] predate the
rise of deep neural networks. Nevertheless, it is not until
the deep learning era that GNNs gain popularity. Recent
advances in GNNs can be broadly categorized into spec-
tral approaches [22], [23], [24] and spatial approaches [25],
[26], [27]. For spectral approaches, graph signal processing
techniques [28], [29] are adopted to process graph data
in the spectral domain. For spatial approaches, the neural
networks directly work on the connectivity patterns of
graphs. Due to the efficiency and effectiveness, the message-
passing framework [11] is a de facto standard in recent GNN
designs, including GCN [30], GraphSAGE [31], GAT [32],
JK-Nets [33], GIN [34], and Graph Nets [35] as particular
instantiations.

One fundamental property of the message-passing
GNNs is permutation-equivariance, i.e., the node repre-
sentations are not dependent on node IDs. For exam-
ple, many studies [36], [37], [38] analyze the connec-
tion between GNNs and the Weisfeiler-Lehman (WL) al-
gorithm [39] of graph isomorphism tests. Since the WL
algorithm is strictly permutation-equivariant, GNNs also
need to be strictly permutation-equivariant to mimic WL
algorithms. By applying permutation-invariant pooling lay-
ers [40], [41], [42] on permutation-equivariant node repre-
sentations, permutation-invariant graph representations can
be obtained [12], [13]. Permutation is orthogonal to the sim-
ilarity transformations studied in this paper. By adopting
permutation-equivariant GNNs as backbones, our model
can also satisfy permutation equivariance and invariance.

2.2 Other Invariance for Geometric Deep Learning

Rotation-invariant and equivariant neural networks for ge-
ometric data have been studied previously [6], [43], [44],
particularly in point clouds [15], [16], [45], [46]. Most of
these methods do not consider other transformations such
as scaling, translation, or reflection. Besides, these meth-
ods design sophisticated neural network layers inspired by
group theories and geometric analysis to guarantee rotation-
invariance and equivariance. In general, these methods
are complicated, computationally expensive, and difficult
to be extended. In comparison, our proposed method is
simple and straightforward. We also empirically compare
our method with these methods in Section 5.1.
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TABLE 1: A Summary of Notations

Symbol | Meaning

V = {v1,...,on} | The set of points

F ¢ RVxd The coordinate matrix

D(-,-),D The distance metric and distance matrix
g=WV¢) A graph

w Learnable parameters in the neural network
T() A similarity transformation

¢, c Scaling constants

HO The point representation in the I*" layer

HO) = P(F) The initial representation and mapping function
H=HD The final point representation

A, X Eigenvalues and the corresponding eigenvectors
S The similarity matrix

In,1n N x N identity matrix/matrix of ones

A scale-invariant GNN is proposed in [47] to han-
dle different scales of node features. However, it cannot
handle other transformations such as translation and ro-
tation. Very recently, geometrically invariant and equiv-
ariant GNNs began to receive attentions [48]. For exam-
ple, IsoGCN [49] is proposed to handle isometric trans-
formations and EGNN [50] is proposed to handle vari-
ous transformations by designing sophisticated message-
passing functions. In general, these methods also design
sophisticated neural network layers, e.g., certain types of
message-passing, to realize invariance and equivariance. In
comparison, our method studies the problem from another
perspective and is more straightforward and compatible
with existing neural networks.

There are also recent works combining eigen-analysis
and neural networks for geometric learning called intrinsic
coordinations. For example, IEConv [51] adopts one extrin-
sic and two intrinsic distances and designs a new convo-
lution operator for protein modeling. Koestler et al. [52]
proposes an intrinsic neural field method for shapes. Tin-
vNet can also be regarded as a type of intrinsic coordinates.
In comparison, our method is more straight-forward and
compatible (only operating in the initial representation),
empirically more effective, and fully distance-preserving.

3 PROBLEM FORMULATION

In this section, we introduce notations and preliminaries of
transformation invariance and similarity transformation. We
summarize notations in Table 1.

We consider each geometric data instance as a collection
of points V = {v1,v2,...,un} with N denoting the number
of points. The points have a coordinate matrix F € RV*4
with d denoting the dimensionality. Denote by F; ., F. ;,
and F; ;, the i row, j® column, and an element of the
matrix, respectively. F; . is the coordinate of point v;. We
denote a symmetric distance metric associated with the
coordinates as D(-,). In this paper, we assume the met-
ric is the Euclidean distance by default. There is a graph
G = (V,€) to describe the relationships between points,
where £ C V x V is a set of edges. The graph can be
provided in the data or constructed from the coordinates,
e.g., the k-nearest neighbors graph. We denote the adjacency
matrix of the graph as A. N (i) = {v; : (v;,v;) € £} is the
neighborhood of v;.
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Neural networks for geometric data usually aim to learn
representation H for the points using the coordinate matrix
F and the graph A. We generally denote such neural net-
works as?

H = NN (F,A; W), (1)

where W are learnable parameters. We mainly study how
to maintain invariance with respect to different transforma-
tions applied to the geometric data.

Definition 1 (Transformation Invariance). For a given trans-
formation T(-) : R — RY, a neural network following Eq. (1)
is transformation invariant if VEF, A, W, the following equation
holds:

NN (T(F), A; W) = NN (F, A; W), @)

i.e., the model outputs identical point representations after the
transformation.

Transformation invariance in Definition 1 is composi-
tional, i.e., if a model is invariant with respect to both
Ti(-) and 72(-), the model is also invariant with respect to
T2 (T1(-)). Thus, we can study invariance for basic trans-
formations, and the results hold for a combination of these
transformations. In this paper, we mainly consider similarity
transformations.

Definition 2 (Similarity Transformation). A similarity trans-
formation is an arbitrary combination of the following transfor-
mations: (1) (Uniform) Scaling: the coordinate matrix is scaled
by a constant, ie., T(F) = cF, where ¢ # 0 is a constant.
(2) Isometric transformation: any transformation that is isometric
with respect to the metric D(,-), i.e.,

{T():D(F;.F;.)=D(T(F).,, TF);.),VF,i,5}. (3)

For the Euclidean distance, isometric transformations include
rotation, translation, and reflection.

Without proper designs, most message-passing GNNs
and other neural networks for point clouds cannot guaran-
tee transformation invariance for geometric data.

4 METHODOLOGY

In this section, we first revisit transformation invariance,
and then introduce our proposed method and provide some
discussions. We further provide extending our method to
equivariance cases in Appendix C.

4.1

To investigate why typical neural network are not trans-
formation invariant, we revisit transformation invariance of
geometric data. We use GNNs as examples, but the analyses
generalize to other neural networks following Eq. (1).

We denote AGG) () as an order-invariant aggregation
function and COMBINE")(.) as a combining function. The
message-passing framework of GNNs [11] is formulated as:

m" = AGG" ({n",vj e N(i)})
W = 5 (COMBINE(” [mg”, hgﬂ)’

Revisiting Transformation Invariance

4)

1. For non-graph-based neural networks for geometric data, A can be
removed from Eq. (1). For notation convenience, we keep A in Eq. (1).



JOURNAL OF IATEX CLASS FILES, VOL. XX, NO. X, XXX 2022

where hz(-l) denotes the representation of point v; at the
1)

layer, m; "’ is the message vector for point v;, and o () is an
activation function. We denote H") = [Hgl), e Hg\l,)} as the
representation of all the points. The initial representation is

Zth

HO =P (F), 5)

where P(-) is the mapping function. The final representation
is H = H®), where L is the number of layers. We easily
have the following remark.

Remark 1. A GNN following Eq. (4) is transformation-invariant
if P(-) is transformation-invariant.

The remark can be proven by mathematical induc-
tion, i.e., if HY is transformation-invariant, H(+1) is also
transformation-invariant. Remark 1 shows that to empower
GNNs to be transformation invariant, we simply need to
ensure that the initial mapping function is transformation-
invariant. However, the existing GNNs directly adopt the
coordinates as the initial representations, i.e., P(F) = F =
H© | and thus cannot satisfy Remark 1. It is natural to ask:
can we have a principled method to obtain transformation-
invariant initial representation from the coordinates? If so,
we can realize transformation invariant neural networks
without modifying the message-passing mechanism.

Manually designing heuristics is obviously one choice.
For example, we can calculate the distances and angles of
points with their nearest neighbors, i.e., the kNN method.
However, vital information may be lost in the heuristics,
leading to sub-optimal results. Ideally, we expect the map-
ping function P(-) to be “information lossless’ so that H(®)
contains the same amount of information as F.

For transformation-invariant geometric problems, useful
information is encoded in the relative distance between
points instead of the coordinates per se. Thus, if H(®) can be
distance-preserving, it is safe to say it is information lossless.
We formulate the distance-preserving requirement as:

pH,HY)) =D (¥, F;.).i,j. 6)

Besides, the transformation-invariant requirement is formu-
lated as

P(F)="P(T (F)),vF, @)

where 7T (+) is any transformation in Definition 2.

However, there exists a conflict between Eq. (6) and
Eq. (7) for the scaling transformation. Specifically, when
T (F) = cF, the distance between points scales accordingly,
ie, D(cF;.,cF;.) = cD(F;. F;.), since the Euclidean
distance has homogeneity of degree 1. However, Eq> (7)
requires the new features to be invariant, i.e., HO =
P (cF) = P (F), and thus D(HEE), HEO)) is also invariant.
Therefore, Eq. (6) cannot hold when ¢ # 1.

To solve that conflict, we relax Eq. (6) by adding an
additional scaling term, i.e., assuming there exists a constant
¢’ so that

D (H(O) H§0)) =D (F;,,F;.) Vi, j. ®)
In other words, the distance-preserving requirement is re-
laxed to not care for the absolute scale of the distance, but
only preserve the relative ratios between different distances.

4

In summary, we require P(-) to simultaneously sat-
isfy Egs. (7) (8). Then, using Remark 1, we can adopt
the initial point representation obtained by P(:) to realize
transformation-invariant neural networks. Notice that the
solution to these two constraints is not unique. Therefore,
we also require P(:) to work in a deterministic way to
ensure invariance. Next, we introduce our proposed plug-in
to instantiate P(-) that satisfies these requirements.

4.2 The TinvNet Method

In this section, we present our proposed method based on
the findings in Section 4.1. Specifically, we find that we
can easily achieve the goal by slightly modifying multi-
dimensional scaling (MDS), a classical dimensionality re-
duction technique [53], as a plug-in for the existing neural
networks.

The core idea of MDS is to obtain distance-preserving
features by an eigen-decomposition problem. Specifically,
we denote the distance matrix as D; ; = D(F,;.,F;.) and
further construct a similarity matrix S € RV*¥ as follows:

1

1
Sij = 5D = —5 (D (Fi., Fj.)°" ©)

Then, we center the similarity matrix by

Sij=Si;—Si. —S.;+S.., (10)
where
_ 1 N _ 1 N
Si. =¥ Zk:l Sik: S5 =§ Zl:l St,j, a

_ 1 N N
8., = N2 Zk:l Z:1:1 Sk,

i.e., the average of the it" row, the average of the j column,
and the average of the matrix, respectively. We can combine
Egs. (9) (10) in an equivalent matrix form:

s= 5 (v y1x) @D (v J1v). @

where Iy is a N X N identity matrix, 15 is a N X N matrix
of ones, and © is the Hadamard product.

S is a N x N matrix containing the information of
distances. To reduce the dimensionality, we calculate the
eigen-decomposition of S. We denote the eigenvalues of
S sorted in descending order as a diagonal matrix A, i.e.,
A1 > Asp > ... > Ay n are eigenvalues, and X is
a matrix of eigenvectors with X.; being the eigenvector
associated with A; ;. The point representation is:

HO = XVA. (13)

However, the original MDS in Eq. (13) can only satisfy
Eq. (6) but not Eq. (8). Thus, we slightly modify Eq. (13)
to a normalized form

| A
HO =X, /-—.
A

From the properties of MDS, Eq. (14) exactly produces our
desired H(®) = P(F). We formalize the results as follows.

(14)
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Algorithm 1 TinvNet: A Transformation-Invariant Neural
Network Plug-in

Require: The coordinate matrix F, the distance metric
D (-, ), the adjacency matrix A

Calculate D; ; = D (F; ., F;.), Vi, j

Calculate S using Eq. (12) ~
Calculate the eigenvalues A and eigenvectors X of S
Calculate H(®) using Eq. (14)

Input H®) into neural networks, e.g., GNN message-
passings in Eq. (4) or general neural network in Eq. (1)

Theorem 1. If D(-,-) is the Euclidean distance, the point repre-
sentation obtained in Eq. (14) satisfies Eq. (8), i.e., there exists a
constant ¢’ so that

pH",H) =D (F;..F;.), Vi, j.

Iyt (15)
Theorem 2. The representation obtained in Eq. (14) satisfies
Eq. (7), ie., given the coordinate matrix F and any T(-) in

Definition 2, the point representation H'®) is invariant.

The proofs are provided in Section A in the appendix.

We show our overall framework in Algorithm 1. We
name our proposed method TinvNet to highlight that it is
Transformation invariant. Since our method is a general
plug-in with alterable neural network components, it is
extremely simple to combine with the existing GNN models
(see line 6 of Algorithm 1). In fact, we can use any neural
network in Eq. (1) as the backbone of TinvNet, including
non-graph-based neural networks for geometric data.

4.3 Discussions
4.3.1 Uniqueness of eigenvectors

One caveat to notice is that the eigenvectors can have
arbitrary signs, i.e., v and —u are eigenvectors with the same
eigenvalue. To tackle this ambiguity, canonical approaches
can be adopted to determine the sign [54], e.g., by letting the
sum of all values be positive. However, there are potential
failure cases (e.g., the sum of values is zero) and issues
regarding directions for different points. Therefore, we take
another approach to enumerate all 2¢ possible eigenvectors
as a new data augmentation method. Notice that d is typi-
cally small for real-world cases, e.g.less than 3. Therefore,
the enumeration will result in slightly but not too heavy of
computational burdens. We provide more justification and
empirical evidence for such an approach in Section 5.3.3.

Another potential issue is eigenvalue multiplicity, i.e.,
multiple eigenvectors have the same eigenvalue. In that
case, obtaining unique eigenvectors is more challenging.
Luckily, we do not find eigenvalue multiplicity for our
tested real-world datasets, and leave handling the issue as
future works.

4.3.2 Time complexity

The extra computational cost of TinvNet compared to base
models mainly comes from the eigen-decomposition of S.
Since it is easy to see that the rank of S is the same as raw
feature F, S has at most d non-zero eigenvalues, where d
denotes the dimensionality of F. Therefore, we only need
to calculate the top-d eigen-decomposition of S, which has
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a time complexity O(N?d), where N is the number of
points. Experimental results to empirically support the time
complexity analysis are provided in Section 5.3.1.

4.3.3 Extension

One may also wonder whether TinvNet can be generalized
to non-Euclidean problems, e.g., the distance metric D(-, )
is not Euclidean. In those cases, TinvNet can be directly
adopted while guaranteeing transformation invariance, but
the distance-preserving guarantee may not hold. To pre-
serve non-Euclidean distances, we may need generalized
MDS [55], [56], non-linear dimensionality reduction meth-
ods [57], [58], or other more advanced methods. We leave
such explorations as future works.

5 EXPERIMENTS

In this section, we conduct experiments to verify our pro-
posed method. Specifically, we aim to answer the following
questions:

e Q1: Can TinvNet guarantee invariance with respect to
various kinds of transformations in Definition 2, such as
translation, rotation, and scaling?

e Q2: Can TinvNet easily combine with different neural
network architectures for geometric data?

e Q3: How does TinvNet perform compared with other
invariant and non-invariant models?

Notice that we do not aim to create new records in the
leaderboard. Instead, we aim to provide a fresh perspective
for the geometric deep learning problem and empirically
verify its usefulness.

5.1 Point Cloud Analysis

The point cloud is one important type of geometric data.
Since the shape of objects is invariant to transformations
such as rotations, transformation-invariant models are vital
to point cloud analysis. We adopt two tasks: object classifi-
cation and object part segmentation.

5.1.1 Object Classification

For object classification, we adopt ModelNet40 [61], a point
cloud dataset containing 40 categories of CAD objects such
as airplanes, cars, tables, etc. Each object is represented by
1,024 points with the 3-D coordinate of points. The task
is to predict the categories of point clouds, i.e., a 40-class
graph classification problem, since each point cloud can be
considered a graph. We use a pre-processed dataset sug-
gested in [60], containing 9,843 objects for training and 2,468
objects for testing. Following [15], [45], we adopt the follow-
ing settings with different rotations. Notice that we only
adopt rotation transformations here following the literature,
while more transformations are adopted in combinatorial
optimization problems in Section 5.2.1.

e z/z: both training and testing data are augmented with
rotations about the z-axis (the gravity axis).

e S50O3/503: both training and testing data are augmented
with arbitrary SO3 (3-D rotations).

e z/S03: training data is augmented with z-axis rotations,
and testing data is augmented with SO3.
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TABLE 2: The results of point cloud analysis on the test set. The object classification results are accuracy (%) on the
ModelNet40 dataset. The object part segmentation results are the mean per-class IoU (%) on the ShapeNet dataset. Larger
values indicate better results for both tasks. Best results are in bold and “—"” means the result is not reported in the paper.

Task | Object Classification | Object Part Segmentation

Setting | z/z S03/S03 z/SO3 | z/z SO3/SO3  z/SO3
RIConv [45] 86.5 86.4 86.4 — 75.5 75.3
Invariant ClusterNet [15] 87.1 87.1 87.1 — — —
baselines PR-invNet [59] 89.2 89.2 89.2 79.4 79.4 79.4
RI-GCN [46] 89.5 89.5 89.5 — 77.3 77.2
Base models PointNet [60] 87.0 63.6 13.4 81.0 71.4 29.0
DGCNN [9] 92.2 73.3 22.3 82.0 759 29.6
Our method TinvNet(PointNet) | 86.5 86.5 86.2 80.9 80.0 80.0
TinvNet(DGCNN) | 89.5 89.5 89.5 82.0 82.1 82.0

TABLE 3: Showcases of point cloud classification for rotated inputs from ModelNet40. All methods adopt the z/SO3 setting.

Method

Ground Truth bookshelf airplane chair night-stand
PointNet [60] car desk stairs dresser
DGCNN [9] sofa airplane stairs glass-box
TinvNet(PointNet) bookshelf airplane chair night-stand
TinvNet(DGCNN) bookshelf airplane chair night-stand

The first setting is standard but less challenging since the
data is aligned to known axes. The other two cases focus
more on models’ ability to handle rotations. The z/SO3
setting is most challenging since it requires models to
generalize well to different rotations without seeing these
rotations in the training data. All results are measured by
accuracy, i.e.,, how many percentages of point clouds are
correctly classified.

For baselines, we adopt both non-rotation-invariant
models and rotation-invariant models. For the former, we
adopt PointNet [60] and DGCNN [9], which are widely
adopted neural networks for geometric data. For rotation-
invariant models, we adopt RIConv [45], ClusterNet [15],
PR-invNet [59], and RI-GCN [46], which are recently pro-
posed rotation-invariant models. Notice that permutation-
equivariant models cannot be simply applied here and thus
are not compared, as in all previous works.

For our proposed method, we adopt PointNet and
DGCNN, which are representative and effective neural
networks but cannot maintain transformation invariance,
as the backbone, i.e., using PointNet or DGCNN as line
5 of Algorithm 1, denoted as TinvNet(PointNet) and Tin-
vNet(DGCNN), respectively. Notice that except for the ini-
tial representations, we keep other settings such as archi-
tectures and hyper-parameters unchanged (please refer to
Appendix B.1 for the exact settings). Thus, all changes in
the performance can be attributed to the differences in initial
representations. Besides, we would also emphasize that all
the baselines are specially designed for point clouds, while
our proposed TinvNet is general and does not utilize any
special property of point clouds.

The results are shown in Table 2 and showcases are

provided in Table 3. We make the following observations.

Base models such as PointNet and DGCNN show
promising results in the standard z/z setting, demonstrating
their effectiveness in extracting useful information from
point clouds. However, when generalizing to rotations, the
performance drops significantly. In the most challenging
z/SO3 setting, both PointNet and DGCNN perform mis-
erably. Such results are consistent with the literature since
PointNet and DGCNN do not consider rotations.

Both TinvNet(PointNet) and TinvNet(DGCNN) perform
equally well on all three settings, indicating TinvNet can
effectively handle rotation transformations of point clouds.
The results provide empirical evidence that TinvNet is
strictly transformation-invariant.

The results in the SO3/SO3 setting show that adopting
data augmentation in the training phase alleviates fairly the
problem caused by rotations. For example, the performance
of PointNet and DGCNN indeed improves when the train-
ing data is augmented with rotations. However, the per-
formance gap between z/z and z/SO3 is still considerable.
Since the number of possible 3D rotations is infinite, it is
infeasible to enumerate all rotated objects.

In the standard z/z setting, the results of TinvNet closely
match the corresponding backbone, i.e., TinvNet(PointNet)
as of PointNet and TinvNet(DGCNN) as of DGCNN. The
results demonstrate that TinvNet does not lose useful in-
formation compared to using the coordinates, verifying
our findings of distance-preserving. Notice that we use the
identical hyper-parameters as in the original backbones.

Our proposed method outperforms RIConv, ClusterNet
and PR-invNet, and closely matches RI-GCN. Notice that
these methods are specifically designed to be rotation-



JOURNAL OF IATEX CLASS FILES, VOL. XX, NO. X, XXX 2022

invariant, while TinvNet is a simple and general method
that does not depend on specific neural architectures. In
other words, TinvNet could be extended more easily to
new advancements for geometric data, such as novel neural
network architectures.

5.1.2 Object Part Segmentation

For object part segmentation, we adopt ShapeNet [62] that
contains 16,880 CAD objects of 16 categories. Each object is
represented by 2,048 points and has an annotation of 2 to
6 parts, adding up to 50 different parts in total. The task is
to predict which part each point belongs to, i.e., a 50-class
node classification problem since each point corresponds
to one node. We follow the standard dataset splits with
14,006 objects for training and 2,874 objects for testing. Other
settings such as transformations and baselines are the same
as object classification in Section 5.1.1.

We report the results in Table 2 and provide some show-
cases in Figure 1. Our proposed method TinvNet manages
to beat all comparing methods for object part segmentation
in the SO3/S03 and z/SO3 setting. The results reconfirm
that TinvNet is highly capable of handling rotation transfor-
mations of point clouds. Though other invariant baselines
are not affected by rotations, they fail to be as expressive as
our proposed method. Besides, owing to the simplicity and
general applicability of TinvNet, we expect the performance
to improve further when adopting more powerful neural
networks.

In summary, the results of object classification and object
part segmentation clearly demonstrate the effectiveness of
TinvNet in handling rotation transformations of geometric
data, outperforming or matching baselines.

5.2 Combinatorial Optimization

Geometric data combined with simple objectives and con-
straints form challenging combinatorial optimization prob-
lems. Using neural networks to solve combinarotial op-
timization has a long history [63] with many important
applications [10]. Therefore, we test the effectiveness of
TinvNet in two such tasks: the travelling salesman problem
and the capacitated vehicle routing problem.

5.2.1 Travelling Salesman Problem

Travelling salesman problem (TSP) is a well-known NP-
hard problem [64] with many practical applications such
as logistics and scheduling [65]. Given a set of points and
the distances between points, TSP aims to find the shortest
possible route that visits each point exactly once and returns
to the origin point. Due to the difficulty in finding optimal
solutions, learning-based methods have been adopted to
facilitate TSP solvers [10].

We follow [66] for the experimental setting. We con-
sider three cases: TSP-20, TSP-50, and TSP-100, containing
N =20, N = 50, and N = 100 points per data instance,
respectively. For each case, we randomly generate 100,000
instances for training and 10,000 instances for testing. All
the points have a random 2-D coordinate in the range [0, 1].
The distance between points is the Euclidean distance. We
adopt the following settings with different transformations
of the coordinates:

7

e None: The coordinate of the points is kept the same as
the raw coordinates.

¢ Translation: We add a random constant to the coordinate
of the points, i.e.,, T(F) = F + ¢, where the constant c is
drawn uniformly from [—100, 100].

o Rotation: The coordinate of the points is randomly
rotated with respect to the centroid, ie., T(F);. =
F+(F;, — F)R, where F = & Zf\il F, . is the centroid
and R € SO2 is a random 2-D rotation matrix.

¢ Reflection: The coordinate is reflected with respect to the
z-axis, i.e., T(F);; = F; j(—1)7.

¢ Scaling: The coordinate of the points is uniformly scaled,
ie, T(F) = cF, where c is a random number drawn
uniformly from (0, 100].

It is easy to that the optimal routes of TSP should be
invariant to the above transformations.

For the baseline and our proposed method, we adopt
GAT [32] as the GNN backbone, which has been shown to
outperform various other GNNs [66]. The detailed settings,
e.g., architectures, hyper-parameters, and decoder struc-
tures, are kept the same as in the original paper (please refer
to Appendix B.1 for details). Besides, we adopt LKH3 [67],
a specialized solver for TSP, as a reference line. Notice
that, similar to Section 5.1, we do not alter our model to
consider the special characteristics of TSP. Instead, we want
to demonstrate the effectiveness of TinvNet in handling
various transformations.

We show the results in Table 4. TinvNet achieves identi-
cal results across different transformations, including trans-
lation, rotation, reflection, and scaling, verifying Theorem 2
that our proposed method is strictly transformation invari-
ant to all the transformations in Definition 2. Notice that
though we study these transformations independently, the
compositionality of transformation invariance guarantees
that TinvNet can also handle an arbitrary combination of
these transformations.

Though GAT achieves similar results as TinvNet in the
None setting, it performs poorly when transformations are
applied. The results show that GAT is most sensitive to
translation and scaling since the range of input features dif-
fers significantly compared to the coordinates seen during
training. The results are consistent with the literature [47]. In
contrast, our TinvNet model does not suffer this issue and
greatly outperforms GAT.

There are still gaps between learning-based methods and
the specialized solver LHK3, and the gap grows larger as
the problem size grows. These results indicate that novel
neural networks and training strategies are still needed to
advance further the study of learning to solve combinato-
rial optimizations. Note that though the existing dedicated
solvers may lead to better results for certain problems at
the current stage, we believe it is important to continue the
study of machine learning based combinatorial optimiza-
tion methods with potential benefits including scalability to
extremely large-scale instances, generalization to new prob-
lems, inspiring new solvers, etc [10], [63]. Since TinvNet is
simple and general, we expect TinvNet to be easily extended
to these yet-to-come methods. Future studies may only
concern the None case to design more powerful architec-
tures and let TinvNet handle the transformation invariance
problem.
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TABLE 4: The results of the travelling salesman problem (TSP) measured by the length of the output route (lower is better).
The numbers in parentheses indicate the performance gap with respect to the specialized solver LHK3.

Size | Method | None (@ap) Translation  (gap) Rotation (eap) Reflection (gap) Scaling? (eap)
LKH3 3.83+0.01 3.83+0.01 3.83+0.01 3.83+0.01 3.8340.01

TSP-20 GAT 3.88+0.01 (1.3%) 10.454+0.02 (172.8%) 3.89+0.01 (1.6%) 4.60+£0.02  (20.1%) 10.1640.02 (165.4%)
TinvNet | 3.87£0.01 (1.1%) 3.87+0.01 (1.1%) 3.874£0.01 (1.1%) 3.87+0.01 (1.1%) 3.8740.01 (1.1%)
LKH3 5.69+0.01 5.69+0.01 5.69+0.01 5.69+0.01 5.6940.01

TSP-50 GAT 5.96+0.01 (4.7%) 26.07+0.04 (358.0%) 6.02+0.01 (5.8%) 7.934+0.04 (39.3%) 24.964+0.03 (338.6%)
TinvNet | 5.98+£0.01 (5.1%) 5.98+0.01 (5.1%) 5.9840.01 (5.1%) 5.98+0.01 (5.12%) 5.9840.01 (5.1%)
LKH3 7.761+0.01 7.761+0.01 7.76+0.01 7.761+0.01 7.76+£0.01

TSP-100 | GAT 8.49+0.01 (94%) 52.154+0.06 (571.7%) 8.66+0.01 (11.5%) 21.60+0.09 (178.2%) 52.83+0.04 (580.7%)
TinvNet | 8.52+0.01 (9.8%) 8.52+0.01 (9.8%) 8.524+0.01  (9.8%) 8.52+0.01 (9.8%) 8.52+0.01 (9.8%)

TABLE 5: The results of the capacitated vehicle routing problem (CVRP) measured by the length of the output route (lower
is better). The numbers in parentheses indicate the performance gap with respect to the specialized solver LHK3.

Size ‘ Method ‘ None (gap) Translation (gap) Rotation (gap) Reflection (gap) Scaling? (gap)

LKH3 6.1340.02 6.13+0.02 6.1340.02 6.1340.02 6.13+0.02

CVRP-20 | GAT 6.5540.02  (6.8%) 20.86+0.08 (240.5%) 6.574+0.02 (7.2%) 7.84+0.03 (28.0%) 20.23+0.06  (230.3%)
TinvNet 6.56+0.02 (7.1%)  6.5640.02 (71%)  6.56+0.02 (7.1%) 6.564+0.02 (7.1%) 6.56+0.02 (7.1%)
LKH3 10.36+0.02 10.36+0.02 10.36+0.02 10.360.02 10.36+0.02

CVRP-50 GAT 11.3140.03 (9.1%) 52.09+0.18 (402.8%) 11.374+0.03 (9.8%) 15.56+0.07 (50.2%) 48.14+0.12  (364.7%)
TinvNet 11.38+£0.03 (9.8%) 11.384+0.03  (9.8%) 11.3840.03 (9.8%) 11.384+0.03 (9.8%) 11.38+£0.03  (9.8%)
LKH3 15.61+0.04 15.61+0.04 15.61+0.04 15.61+0.04 15.61+0.04

CVRP-100 | GAT 17.7340.04 (13.6%) 104.23+0.35 (567.8%) 17.874+0.04 (14.5%) 62.95+0.50 (303.3%) 100.95+0.24 (546.6%)
TinvNet 17.31+£0.04 (10.9%) 17.31+£0.04 (10.9%) 17.314+0.04 (10.9%) 17.314+0.04 (10.9%) 17.31+0.04 (10.9%)

We also plot the output route of GAT and TinvNet for
one example instance of TSP-20 in Figure 2. The figure
clearly demonstrates the importance of maintaining trans-
formation invariance and the efficacy of TinvNet.

5.2.2 Capacitated Vehicle Routing Problem

Capacitated vehicle routing problem (CVRP) [68] is a gener-
alization to TSP with more practical usages. Given a set of
points and the distances between points, instead of finding
one shortest route as in TSP, we need to construct multiple
routes starting and ending from a central depot. The goal
is to minimize the length of all the routes while meeting
the demand of each point. Besides, the total demand of
points in each route is capacitated, i.e., corresponding to
constraints in real delivery problems that our “vehicles”
have a limited capacity. CVRP is also known to be an NP-
hard problem [68].

Similar to Section 5.2.1, we follow [66] to set up the
experimental setting for CVRP. Specifically, we adopt three
cases: CVRP-20, CVRP-50, and CVRP-100 containing 20, 50,
and 100 points per instance, respectively. The coordinates of
points are in the range [0, 1], and the metric is the Euclidean
distance. For each case, we generate 100,000 instances for
training and 10,000 instances for testing. We adopt the
same five transformations as in TSP, i.e., None, Translation,
Rotation, Reflection, and Scaling. The baselines and exper-
imental settings are also the same as in Section 5.2.1. For
more details, please refer to Appendix B.1.

We report the results in Table 5 and provide a showcase
in Figure 3. The results show similar trends as in Table 4
for TSP. Concretely, GAT performs reasonably well in the
None setting but fails to generalize to different transforma-
tions. For some transformations like translation and scaling,

the results of GAT even become intolerable. On the other
hand, thanks to the transformation invariance property of
TinvNet, it is able to handle different transformations with
zero performance drop. The results demonstrate again that
TinvNet is an effective and general solution towards trans-
formation invariant combinatorial problems.

5.3 Analysis
5.3.1 Scalability

To empirically analyze the scalability of our proposed
method, we record the running time of calculating the initial
point representations while varying the number of points.
The average results of 10 runs are reported in Figure 4.
We also fit a linear regression curve after applying log
transformation on both axes and report the fitting statistics.
The results show that the running time grows quadratically
with respect to the number of points, which is consistent
with our analysis in Section 4.2. Besides, for a data instance
with 2,048 points, the running time is less than 1 second.
Notice that the initial point representations only need to
be calculated once and can be pre-computed, while the
optimization of backbone neural networks usually needs
dozens or hundreds of epochs. Therefore, TinvNet does not
incur high extra computational costs.

5.3.2 Comparison with KNN and Data Whitening

A straightforward heuristic to obtain transformation-
invariant features is k-NN, i.e., calculating the distance
of each point with its £ nearest neighbors. Besides,

2. Since the length of routes is proportional to scaling, we normalize
the results in the scaling setting to be consistent with other settings, i.e.,
when T (F) = cF, the length of output routes is scaled by %



JOURNAL OF IATEX CLASS FILES, VOL. XX, NO. X, XXX 2022

(a) Ground truth (b) PointNet

(c) DGCNN

(d) TinvNet(PointNet) (e) TinvNet(DGCNN)

Fig. 1: Showcases of point cloud part segmentation for rotated inputs from ShapeNet. All methods adopt the z/SO3 setting.

data whitening is a classical data pre-processing method
by decorrelating different dimensions of the input data.
From its properties, data whitening can also ensure
transformation-invariance (but not distance-preserving).
Next, we empirically compare our proposed method with
k-NN and data whitening. Specifically, we choose two k
values for k-NN: k = 3, which has the same dimensionality
as raw features and our proposed method, and £ = 10,
which contains more flexibility. For data whitening, we
adopt the PCA-whitening. We report the results for the
point cloud classification task in Table 6, while other tasks
indicate similar results. The results show that, though k-NN
and data whitening can maintain rotation-invariance, their
performance is much lower than our proposed method.

5.3.3 Comparison with Canonical Eigenvector Sign

As discussed in Section 4.3, the signs may bring ambiguity
to TinvNet. We propose to enumerate all 2¢ eigenvectors
with different signs as a data augmentation technique to
solve this issue. An alternative is to use a canonical ap-
proach to determine a unique, e.g., by letting the sum of all
values be positive [54]. We compare these two approaches
empirically for the point cloud classification task and report

TABLE 6: The results of comparing with kNN and data
whitening for point cloud classification on the ModelNet40
dataset. The best results for each backbone are in bold.

Method | z/z SO3/SO3 z/SO3
PointNet(k-NN,k=3) 249 249 249
PointNet(k-NN,k=10) | 29.9 29.9 29.9
PointNet(Whitening) 81.9 81.9 81.9
TinvNet(PointNet) 86.5 86.5 86.2
DGCNN(k-NN,k=3) 29.9 29.9 29.9
DGCNN(k-NN, k=3) 36.1 36.1 36.1
DGCNN(Whitening) 85.8 85.8 85.8
TinvNet(DGCNN) 89.5 89.5 89.5

the results in Table 7, where fixing the sign is denoted
as TinvNet-F. The results indicate that enumerating the 24
possible signs can consistently improve the performance,
with the cost of increasing computations. A plausible ex-
planation is that there are potential direction issues for
the canonical approach. For example, consider point clouds
all representing airplanes. Though the canonical approach
ensures that each airplane has a unique direction, there is
no guarantee that different airplanes are aligned to the same
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(a) The results of GAT.
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(b) The results of TinvNet.

Fig. 2: The output route of (a) GAT, and (b) TinvNet for one example instance of TSP-20 after different transformations.
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(b) The results of TinvNet.

Fig. 3: The output route of (a) GAT, and (b) TinvNet for one example instance of CVRP-20 after different transformations.

TABLE 7: The results of enumerating signs of eigenvectors
as data augmentation and using a unique sign by the
canonical approach for point cloud classification task.

Method | z/z SO3/S03 z/SO3
TinvNet(PointNet)-F | 85.4 85.2 85.4
TinvNet(PointNet) 86.5 86.5 86.2
TinvNet(DGCNN)-F | 88.3 89.2 88.5
TinvNet(DGCNN) 89.5 89.5 89.5

direction, e.g., some airplanes may point towards the left,

others may point towards the right, upside down, etc. The
direction issue may harm the model learning. Besides, the
canonical approaches can have failure cases (e.g., the sum
of all values is zero), though we do not observe such failure
cases in our experiments.

5.3.4 Synthetic Dataset with Eigenvalue Multiplicity

As discussed in Section 4.3.1, eigenvalue multiplicity may
bring challenges for TinvNet. To gain more empirical in-
sights, we conduct experiments on synthetic datasets by
generating and classifying point cloud objects with sym-
metry, which naturally results in eigenvalue multiplicity.
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TABLE 8: The results of object classification on synthetic dataset.

Noise \ 0 0.25 0.50 0.75 1.00
TinvNet(PointNet) \ 93.334+2.14 94.56+1.08 94.33+1.13 91.89+1.47 89.67+1.43
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Fig. 4: The running time of calculating the initial point
representations with respect to the number of points.

Specifically, we randomly generate three types of objects:
cylinder, regular quadrangular prism, and regular hexag-
onal prism. For each category, we generate 200 objects,
where 70% is used for training and the rest for testing, and
each object is represented by 512 3D points. We also ran-
domly add Gaussian noises into the input coordinate matrix.
Specifically, we adopt the poisoning attack setting, i.e., the
random noises are added into both the training and testing
stage. We report the average results in Table 8 with 5 random
seeds. The results show that our proposed method works
reasonably well and stable on the synthetic dataset, even
with random noises, indicating that eigenvalue multiplicity
does not greatly affect our model empirically.

6 CONCLUSION

In this paper, we first revisit transformation invariance of
geometric data using neural networks and find that trans-
formation invariant and distance-preserving initial repre-
sentations are sufficient to solve the problem. Motivated by
these findings, we propose TinvNet, a straightforward and
general transformation invariant neural network plug-in for
geometric data. We prove that TinvNet can strictly guaran-
tee transformation invariance and is general and compatible
with various architectures. Experimental results on point
cloud analysis and combinatorial optimization demonstrate
the effectiveness and general applicability of TinvNet.

One limitation of TinvINet is that it can only handle sim-
ilarity transformation, and we plan to study other transfor-
mations (e.g., affine transformations) in the future. It would
also be interesting to test TinvNet for more applications.
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